Информационный портал города Ипатово > Это интересно > Звёздные войны мифы и реальность
Звёздные войны мифы и реальность11 мая 2013. |
Вопрос войны в космосе невозможно разобрать, не коснувшись проблем термодинамики. Ведь космос отличается от Земли не только отсутствием силы тяжести и силы сопротивления движению — космос ещё и обладает совершенно отличной от Земли термодинамикой. А термодинамика космоса будет важна нам и для войны, и для мирной жизни. Потому что термодинамика — это наше всё. Поэтому, прежде чем "запилить" ужасную и смертоносную Звезду Смерти, которая должна своим мощным выстрелом разрвать какую-то пролетающую рядом планетку или зазевавшийся стардестройер, мы должны указать на несколько неприятных для самой Звезды Смерти моментов. Итак, приступим. В начале... В начале у нас есть три начала термодинамики. Которые нам говорят о том, что всякая вещь есть тепло на выходе и могут быть сформулированы в шуточной форме: Первый закон: Нельзя выиграть у Термодинамики, можно только сыграть вничью. Второй закон: Сыграть вничью можно только при абсолютном нуле. Третий закон: Абсолютный ноль недостижим. Я позволю себе переформулировать эти законы для планет и космоса: Первый закон: Планета не выиграет в войну у Космоса, можно только сыграть вничью. Второй закон: Сыграть войну вничью можно только ничего не делая. Третий закон: Война в космосе невозможна. И в этом нам помогает и термодинамика, и физика, и то, как устроен наш мир. Когда мы говорили о сражении в космосе, мы невольно представили себе бронированные громады, которые обмениваются залпами из орудий главного калибра, запуская навстречу врагу по баллистическим траекториям вёдра гвоздей (ускорять не надо, скорости и так исчисляются километрами в секунду), пуляют друг в друга ракетами с ядерными и термоядерными боеголовками, а на близких расстояниях — ещё и поджаривают друг друга лучами своих сверхмощных лазеров. Сразу предупреждаю читателей: всё это практически невозможно. В теории у нас, конечно, почти что Звезда Смери, а вот на практике — есть два придурка, которые пилят в смешных костюмах доску на зимнем заднем дворе. Начнём с лазеров. Любой лазер — это мощность. Мощность современных разрабатываемых лазеров составляет около 1 МВт. Именно такую мощность имеет, например, лазер американской "боевой лаборатории" Boeing YAL-1. В мечтах американских военных этот пепелац должен сбивать стартующие российские МБР ещё в атмосфере и послужить заменой почившей в бозе программы СОИ. Настоящий лазерный пиу-пиу. Стоил 5 млрд. долларов. Не взлетел. Для сравнения величины мощности лазерного оружия (1 МВт) его часто сравнивают с чем-то более привычным вашему пониманию — например, мощность выстрела из 76-мм пушки составляет около 150 МВт (да, это так), выстрел из винтовки СВД имеет мощность около 180 кВт, а английский длинный лук при выстреле развивал мощность в 4,2 кВт. Однако, в защиту лазера, всё же надо сказать, что принципы действия лазерного и баллистического оружия несколько отличаются друг от друга. Лазер бьёт по цели достаточно длинными импульсами (YAL-1 мог выдавать эту мощность на протяжении 3-5 секунд), а пушка, винтовка или лук стреляют по цели тоже импульсно, но гораздо более короткими промежутками, затрачивая на выстрел от 0,1 до 0,01 секунды. Поэтому, лучше сравнить их в виде джоулей энергии, переданных в виде "послания добра и мира" по направлению к врагу. Имеем: Кроме того, стоит добавить, что в случае, если пушка стреляет не чугунной болванкой, а хотя бы фугасом, ещё около 2 МДж энергии будет доставлено в виде энергии взрывчатого вещества, которое попадёт во врага. В общем, вот эта вот груда настоящего, добротного чугуния доставит (при прочих равных) к врагу в космосе гораздо больше нужной энергии, чем настоящий, няшный боевой лазарь: Тем более, надо понимать, что в космосе нет земной баллистики, поправок на ветер и температуру воздуха — при желании и при наличии достаточно мощного вычислителя засандалить 4 МДж добра прямо в темечко супостату никто не помешает. Однако основной "трэшъ, угаръ и содомiя" начинается тогда, когда к энергиям разных баллистических снарядов начинаешь добавлять всяческие вкусности вроде относительной скорости двух враждующих флотов. Я не буду вас пугать встречной скоростью в 100 км/с, которая, в принципе, легко достижима в разборке "Марс-Земля", но давайте решим посмотреть, что случится, если два космических адмирала встретятся на весьма достижимой между Луной и Землёй относительной скорости в 10 км/с. Для лазера значения энергии не поменяются никак (принцип действия не позволяет там учитывать относительную скорость), а вот энергии баллистических снарядов поменяются разительно: Ух-ты! Блочный лук неожиданно вырывается вперёд и имеет мощность в половину мощности лазера! А что? Стрела тяжёлая (я принял массу в 30 грамм), основную скорость ей придаёт не тетива, а скорость двух космических кораблей друг относительно друга.
Впрочем, всё украдено до нас. Станция «Салют-3» («Алмаз-2») была оборудована 23-мм автоматической пушкой, сконструированной КБ академика Нудельмана для стрельбы в вакууме (система «Щит-1»). Испытания пушки прошли в январе 1975 года. Вот это творение сумрачного русского гения, настоящее космическое "пиу-пиу": Однако, проблемы лазеров не исчерпываются тем, что на реальных скоростях космического боя они резко уступают даже обычным огнестрельным орудиям весьма скромного калибра. Основная проблема лазеров в другом — у них совершенно неудовлетворительный КПД. Для получения достаточного для повреждения цели количества излучаемой энергии, необходимо затратить в десятки (а иногда и в сотни) раз больше энергии для накачки рабочего тела лазера. В частности, как мы показали выше, для нанесения повреждения, аналогичного удару пули калибра 7,62 мм (в энергетическом соотношении) требуется лазерный импульс мощностью около 3,6 кДж. Лучевой импульс продолжительностью в секунду, таким образом, будет иметь мощность 3600 ватт. При этом следует учесть, что фактор низкого КПД лазера обяжет нас иметь источник питания должен минимум в десять раз больший по мощности (а может быть — и в сто раз больший). Именно масса источников энергии для накачки, в значительной степени, определит тяжесть подобного оружия по сравнению с баллистическими системами. На настоящее время портативных источников энергии с такой плотностью энергии не существует. Никаких солнечных батарей, никаких Но гораздо важнее другое. Не излучённый в лазерном импульсе остаток энергии выделится в виде тепла в конструкции оружия, что потребует весьма эффективной и тяжёлой системы охлаждения для сброса тепла. А потребное время остывания, в свою очередь, чрезвычайно уменьшит скорострельность оружия. Оговоримся, что проблема теплоотвода отчасти решена в лазерах с химической накачкой (в частности, кислородно-йодном и дейтерий-фторном лазерах большой мощности, выдающих мегаватты в секундном импульсе), где отработанные химические компоненты выбрасываются из системы после импульса, унося тепло. В то же время, излучателю требуется большой запас этих, зачастую агрессивных, реагентов и соответствующие ёмкости для хранения. И вот тут-то мы подходим к главной проблеме лазеров в космосе. Тепло там просто некуда девать. Даже сбросив часть тепла в виде отработанных компонентов накачки лазера (кто сказал: "Каждый килограмм в космосе бесценен? Молчать!") мы всё равно оставим часть тепла в конструкциях корабля. А значит — нам понадобится это тепло излучать. Других разумных вариантов в космосе нет, ни градирню, ни пруд-охладитель, ни вентиляторы там не поставишь. А значит — практически любой корабль, который будет активно двигаться в космосе и ещё пытаться время от времени постреливать чем-либо, будет выглядеть где-то вот так: Красное — это радиаторы охлаждения корабля. И это они не покрашены так, они сами сияют тёмно-малиновым светом, излучая тепло в окружающий космос и имея температуру в пределах 700-800 °C. Столь высокая температура нужна, чтобы радиаторы имели сколь-нибудь "земной размер", поскольку при более низких температурах их надо было бы сделать пропорционально больше — согласно закону Стефана-Больцмана любое тело излучает энергию пропорционально четвёртой степени своей температуры. Так что, господа, если вы не хотите радиаторов размеров в десяток километров на каждом корабле, который что-то творит у себя внутри с энергией — будьте готовы к тёмно-вишнёвым (а может быть — и к ослепительно-жёлтым) радиаторам. Причём, радиаторы вынуждены будут ставить себе почти все корабли — и двигатель, и системы жизнеобеспечения кораблей, практически всё оружие и даже центральное светило Солнечной системы — всё это будет постоянным источником тепла. Это фотография станции "Скайлэб". Блестящая "заплатка", натянутая поверх станции — это отражающая плёнка (попросту — высокопрочная фольга), которую астронавты были вынуждены натянуть поверх чёрного корпуса станции, чтобы избавить её от перегрева на Солнце. Во время старта "Скайлэба" с Земли в результате аварии был уничтожен теплозащитный экран, важный элемент системы терморегулирования. В результате этого внутри герметичных отсеков, предназначенных для комфортной жизни астронавтов, стремительно выросла температура (до 65 °С). Специалисты NASA даже опасались, что станция заполнится ядовитыми газами от пластика и других облицовочных материалов (они не были рассчитаны на такую высокую температуру), выстилавших отсеки изнутри. Поэтому первая же экспедиция на "Скайлэб" была вынуждена заниматься установкой этой корявой плёнки поверх погибающей станции. Кто там сказал снова это дурацкое слово "стелс"? А куда деть радиаторы? (ну и, конечно, попутный дурацкий вопрос: "А как защитить радиаторы от Смысл идеи такого оружия описал Роберт Хайнлайн в своём легендарном классическом романе "Луна — суровая хозяйка". Это орбитальная бомбардировка. Ведь, в самом деле, если посмотреть на ситуацию с точки зрения "эм-вэ-квадрат-пополам" Земля — очень тоскливое место для жизни. Для того, чтобы забросить на вершину гравитационного колодца, в тот самый вожделённый космос, каких-то жалких 20 тонн массы, надо собирать на дне колодца ракету с общим стартовым весом в добрых 700 тонн. А если запустить откуда-то из пояса астероидов небольшой камешек массой в 2000 тонн? Какую энергию при скорости в 10 км/с он будет иметь на орбите Земли? 1 · 10 в 14 степени Дж. Лазер говорите? Давайте тогда уж лучше в тротиловом эквиваленте. 25 килотонн. Снесёт остров Манхэттен к чертям. Да, я знаю, знаю. Атмосфера. Но 2000 тонн — отнюдь не предел для булыжника, который летит в нужное время и в нужном месте. 2000 тонн — это кусок хондрита размерами 12 x 12 x 12 метров. Можно найти булыжник и поувесистее. И он вряд ли будет дорого стоить. Ну — точнее его стоимость совершенно не будет соотносима с тем, что мы сейчас подразумеваем, произнося фразу "бабахнуло 25 килотонн". Только баллистические снаряды, только хардкор. Булыжники на службе гнева Господа. "Свистать наверх лучников! Стрелы — товсь! Враг по азимуту ноль-три-пять, созвездие Гончих псов. Открыть заградительный огонь! Целится в радиаторы! Не дать им прорваться к нашим булыжникам!" Космосу явно есть чем защищаться. Но он вряд ли нападёт первым. Потому что ему это будет не очень интересно. Источник: crustgroup.livejournal.com Вернуться назад |